If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 49v2 + 69v + 25 = 0 Reorder the terms: 25 + 69v + 49v2 = 0 Solving 25 + 69v + 49v2 = 0 Solving for variable 'v'. Begin completing the square. Divide all terms by 49 the coefficient of the squared term: Divide each side by '49'. 0.5102040816 + 1.408163265v + v2 = 0 Move the constant term to the right: Add '-0.5102040816' to each side of the equation. 0.5102040816 + 1.408163265v + -0.5102040816 + v2 = 0 + -0.5102040816 Reorder the terms: 0.5102040816 + -0.5102040816 + 1.408163265v + v2 = 0 + -0.5102040816 Combine like terms: 0.5102040816 + -0.5102040816 = 0.0000000000 0.0000000000 + 1.408163265v + v2 = 0 + -0.5102040816 1.408163265v + v2 = 0 + -0.5102040816 Combine like terms: 0 + -0.5102040816 = -0.5102040816 1.408163265v + v2 = -0.5102040816 The v term is 1.408163265v. Take half its coefficient (0.7040816325). Square it (0.4957309452) and add it to both sides. Add '0.4957309452' to each side of the equation. 1.408163265v + 0.4957309452 + v2 = -0.5102040816 + 0.4957309452 Reorder the terms: 0.4957309452 + 1.408163265v + v2 = -0.5102040816 + 0.4957309452 Combine like terms: -0.5102040816 + 0.4957309452 = -0.0144731364 0.4957309452 + 1.408163265v + v2 = -0.0144731364 Factor a perfect square on the left side: (v + 0.7040816325)(v + 0.7040816325) = -0.0144731364 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -2-(2-2p)= | | 45x^3+48x^2+12x= | | -5y=4x | | 4g+g=15 | | 3y^2-5y^3-5y^2+7y^3= | | 10y^3-25y^2-125y= | | 4.2x-3=-9.3 | | 2/9x-2=-4 | | 3/2x+3=0 | | 12x^3-121x^2-121x= | | 1/6x+7=-6 | | -28=-7(-5+n) | | 8x-4=10(x+1) | | (9x-5)-2(4x+4)=-7 | | 0=3-3x | | 8=9-x | | 2/3.6+1.7 | | -7(3+5x)=-21-x | | -8+7a=-4(4a+2) | | y/5=y | | -5(2x+4)+(11x-8)=0 | | -17+2p=5(7+3p) | | 33b^2-84b-45= | | Y=10/9+10 | | -15+6n=-(n+7)+5n | | 6x-8+12-2x=28 | | 16+k=8(7k+2)+6k | | 4xsquared=80 | | -80h^3+120h^2y-45hy^2= | | (4-x)^2(x-9/2)=0 | | 2a^2+5a^2=x^2 | | 9x^2+3x-30= |